Talk 1 - Shubham

Def A Ricci soliton structure is
$$(M^n, g, X, \lambda)$$
 with
 (M^n, g) a Riemannian monifold, $X \in \Gamma(TM)$, $\lambda \in IR$ s.t.
 $Ric + \frac{1}{4}J_Xg = \frac{\lambda}{4}g - Rs$

1/2 factor is chosen just for computational case.

Trace of RS gives
R + div X =
$$\frac{n\lambda}{2}$$
.

When
$$X = \nabla f$$
 for some $f \in C^{\infty}(M)$ there we say that it is
a gradient Ricci soliton (GRS) and we get
 $\operatorname{Ric} + \operatorname{Hess} f = \frac{1}{2}g$ or $\operatorname{Rij} + \nabla_i \nabla_j f = \frac{1}{2}g_{ij}$.

-D IR+ and Diff (17) act naturally as d.g = org and 4.g=4*g on the space Met (17). . Ric is scaling and differ invariant

=
$$\mathcal{D}$$
 Ric(ag) = Ric(g), Ric(φ^*g) = φ^* Ric(g). \therefore the actual
on a RS is
i) for $\alpha \in \mathbb{R}_+$ ($\Pi^n, \alpha g, \alpha^{-1}X, \alpha^{-1}A$) is again a RS.
a) If $\varphi \colon \mathbb{N}^n \to \mathbb{M}^n$ is a differe, then ($\mathbb{N}^n, \varphi^*g, \varphi^*X, A$) is a RS.
^{To} If K is a Killing u.f. then ($\Pi^n, g, X + K, A$) is a RS.

 $\mathbb{Det}^n := A RS (Π^n, g, X, A) is shrinking if $A > 0$ (shrinkero)
eschambing if $A > 0$ (shrinkero)
(Aleadies)
Aleady of $A = 0$ (Aleadies)$

We'll usually normalize so that A is 1, -1 or 0 en the above cases respectively.

Recall, if g(t) is a RF OU Mⁿ X [a1b] there for any fixed x>0 and y ∈ Diff(H), g(t) = X(4*g)(t/x) is again a RF or Mⁿ x [xa, xb]. So geometrically, these two solⁿ are essentially the some.

$$\frac{P_{nop}}{P_{nop}} := \text{let } (\Pi^{n}, g_{o}) \text{ be a Riem: monifold.}$$

a) Duppose $g(t) = \alpha(t) (Q_{t}^{*}g_{o} \text{ is a RF on } M^{n} \times (Q, b) w/\alpha(t):(Q, b) - R$
a positive smooth function, and Q_{t} a family of diffeos on $t \in (Q_{1}b)$.
Then $\forall t \in (Q_{1}b) \exists \chi(t) \in \Gamma(TM) \text{ and a sealar } d(t) \text{ s.t.}$
 $(M^{n}, g(t), \chi(t), \lambda(t)) \text{ is a RS.}$

$$\frac{1}{1000} := \sup_{t \to 0} \bigcup_{t \to 0}$$

• Choose
$$\lambda(c) = -\frac{\alpha'(c)}{\alpha(c)}$$
 gives a RS.

sti
$$\Psi_{s}^{c}: U \rightarrow V$$
, se $(-e, e)$ $w/\Psi_{s}^{c}(x) = x$ and
 $\frac{\partial}{\partial s} \Big|_{s=e} \Psi_{s}(x) = X(\Psi_{c}(x))$ on $\Psi_{x}(-e, e)$.
choose t st $-e < -\frac{1}{2} \ln(1 - \lambda t) < e$ or $\frac{1-e^{-\lambda t}}{\lambda}$
When $\lambda \neq 0$, define $b = \min \{e, 1\lambda\}$ and $q = -b$ and $\Psi_{t}(e(q_{t}))$
let $w(t) = 1 - \lambda t$, $\Psi_{t} = \Psi_{c(t)}^{c} w|$ $c(t) = -\frac{1}{\lambda} \ln(1 - \lambda t)$.

Then
$$g(t) = \alpha(t) \varphi_t^* g_0 = (1 - \lambda t) \varphi_t^* g_0$$
 satisfies $g(o) = g_0$
and $\frac{\partial}{\partial t} g(t) = \alpha'(t) \varphi_{c(t)}^* g_0 + d(t) c'(t) \cdot \varphi_{c(t)}^* d_X g_0$
 $= -\lambda \varphi_t^* g_0 + \alpha(t) \left(\frac{1}{\alpha(t)}\right) \varphi_{c(t)}^* d_X g_0$
 $= -\lambda \varphi_t^* g_0 + \varphi_t^* \left(-2Ric(g_0) + \lambda g_0\right)$
 $= -\lambda Ric(g(t))$ on $U(x(a,b))$.

When d=0, choose $\alpha(t)=1$ and $(f_t = \psi_t \cdot \theta_t)$ $\frac{\partial}{\partial t} \psi_t^* g_0 = \psi_t^* d_x g_0 = -\partial \psi_t^* \operatorname{Ric}(g_0) = -\partial \operatorname{Ric}(g_{(t)})$ 19

note = If w is some tensor out then

$$d_{X}\omega|_{p} = \frac{d}{dt}|_{t=0} |\Psi_{t}^{*}\omega|_{p} = \lim_{t\to0} \frac{1}{t} (\Psi_{t}^{*}(\omega_{(e(p))}) - \omega_{p})$$

 $\psi|_{t}$ the associated frew of X.

$$\frac{d}{dt}\Big|_{t=t_0} \frac{\varphi_t^* \omega}{dt} = \frac{d}{dt}\Big|_{t=0} \frac{\varphi_t^* \varphi_t^* \omega}{\varphi_t^* \omega} = \frac{\varphi_t^* d}{dt}\Big|_{t=0} \frac{\varphi_t^* \omega}{\varphi_t^* \omega} = \frac{\varphi_t^* d}{\varphi_t^* \omega} = \frac{\varphi_$$

" when X is a complete v.f., the domain of defn in the proof of
part b) would be at least as large as that permitted by the RS type
, i.e.
$$(-\infty, \frac{1}{\lambda})$$
 for abrinkers, $(-\infty, \infty)$ for steadies and $(-\frac{1}{\lambda}, \infty)$
for exponders.

(1) The Gaussian Soliton
For
$$\lambda \in \mathbb{R}$$
, $(\mathbb{R}^n, g_{\text{Euc}}, f_{\text{Gau}}, \lambda) = \frac{1}{4} |z|^2$ is called the Gaussian soliton.

$$\nabla_{i}f = \frac{\lambda}{a} \langle \varkappa, \nabla_{i} \varkappa \rangle, \quad \nabla_{i} \nabla_{j}f = \frac{\lambda}{a} \langle \nabla_{j} \varkappa, \nabla_{i} \varkappa \rangle + \frac{\lambda}{a} \langle \varkappa, \nabla_{i} \nabla_{j} \varkappa \rangle$$
$$= \frac{\lambda}{a} g_{ij}$$

: \mathbb{R}^n can be regarded as a soliton of any type. In fact, $f(x) = \frac{\lambda}{y} |x|^2 + \langle Q, x \rangle + b$ w/ $Q \in \mathbb{R}^n$ and $b \in \mathbb{R}$ also gives the same soliton structure.

note:-
$$\nabla f = \frac{\lambda}{a} x^{i} \frac{\partial}{\partial x^{i}}$$
 = ∂ integrating it gains the 1-parameter
formity of diffeomorphisms $\tilde{\psi}_{t}(x) = e^{\frac{\lambda}{2}t} x$
is from the previous prop., we see that
 $P_{t} = \tilde{\Psi}_{-\frac{1}{\lambda}} \ln(1-\lambda t)$ when $\lambda \neq 0$ and $\Psi_{t} = \tilde{\Psi}_{t}$ when $\lambda = 0$
gives the formity of diffeos, i.e.
 $\Psi_{t}(x) = (1-\lambda t)^{-1/2} x$ and $g(t) = (1-\lambda t) \Psi_{t}^{*} g_{euc}$
 $= g_{euc}$. as expected.

8. Strinking round Spheres

$$(\mathbb{B}^n, g_{round})$$
 is shrinking gradient Ricci solitons ω/d
 $f = constant: g = 2(n-1)g_{sn}$ satisfies. Ric + $\nabla^2 f = \frac{1}{2}g$

$$\omega/\Lambda = 1$$
. $\circ \circ \omega$ can take any constant function, let's choose
 $f = \frac{n}{2}$ and we get $(5^{n}, 9, \frac{n}{2})$ as a shrinking gradient Ricci soliton.

The solution
$$g(t) = (1-t)g$$
 which is defined for $t \in (-\infty, 1)$.
For $t < 1$, the metrics $g(t)$ have radius $r(t) = \sqrt{a(n-1)t}$.

3 Einstein manifolds
If
$$(M^n, g, X, \lambda)$$
 is Einstein w/ Ric = $\frac{1}{2}g$ then
 $J_Xg = 0$ and X is Killing.

(v) Topping-Yie nongradient Ricci soliton
Consider
$$\mathbb{R}^2$$
 w/ $g = \frac{2}{1+y^2} (dn^2 + dy^2)$ and $X = -2\frac{2}{2x} - y\frac{2}{2y}$.
Then $(\mathbb{R}^2, g, X, -1)$ is an expanding soliton.